## Rutgers University: Algebra Written Qualifying Exam January 2006: Day 2 Problem 4 Solution

**Exercise.** Prove that every group of order 6 is either isomorphic to the cyclic group  $\mathbb{Z}/6\mathbb{Z}$  or to the symmetric group  $S_3$ .

## Solution.

If  $|G| = 2 \cdot 3$ , then by the third Sylow theorem

$$n_3 \equiv 1 \mod 3$$

and

$$n_3 \mid 2$$

$$n_3 = 1$$

$$n_2 \equiv 1 \mod 2$$

and

$$n_2 \mid 3$$

$$n_2 = 1 \text{ or } 3$$

If  $n_3 = 1$  and  $n_2 = 1$  then the Sylow 3-subgroup,  $P_3$ , and the Sylow 2-subgroup,  $P_2$ , are both normal in G.

$$P_2P_3\subseteq G$$

$$|P_2P_3| = \frac{|P_2| \cdot |P_3|}{|P_2 \cap P_3|} = \frac{2 \cdot 3}{1} = |G|$$

$$\Longrightarrow$$

$$G = P_2 P_3$$

Since  $G = P_2P_3$  and both  $P_2, P_3$  normal in G,

$$G \cong P_2 \times P_3$$

And since  $|P_2| = 2$  and  $|P_3| = 3$ , which are both prime,  $P_2$  and  $|P_3|$  are cyclic

$$\implies G \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$$

If  $G \not\cong \mathbb{Z}_6$ , then  $n_3 = 1$  and  $n_2 = 3$ .

There are 1(3-1)=2 elements of order 3 and 3(2-1)=3 elements of order 2

$$\implies G = \{e, g_1, g_2, g_3, h, h_2\}, \text{ where } o(g_1) = o(g_2) = o(g_3) = 2 \text{ and } o(h) = o(h^2) = 3$$

$$o(h) = o(h^2) =$$

$$h \neq g_i \implies g_i h \neq \underbrace{g_i^2 = e}_{o(g_i)=2} \text{ and } hg_i \neq \underbrace{g_i^2 = e}_{o(g_i)=2} \implies o(g_i h) \neq 1 \text{ and } o(hg_i) \neq 1$$

$$h \neq g_i \neq e \implies h^2 \neq g_i h \neq h \text{ and } h^2 \neq hg_i \neq h \implies o(g_i h) \neq 3 \text{ and } o(hg_i) \neq 3$$

$$h \neq g_i \neq e \implies h^2 \neq g_i h \neq h \text{ and } h^2 \neq h g_i \neq h \implies o(g_i h) \neq 3 \text{ and } o(h) \neq 0$$

$$\therefore o(g_i h) = o(hg_i) = 2 \implies g_j := g_i h = g_i h \underbrace{(g_i h^3 g_i)}_e = \underbrace{(g_i h)^2}_e h^2 g_i = h^2 g_i \qquad \text{s.t. } j \neq i$$
and  $g_k := hg_i = hg_i \underbrace{(hg_i^2 h^2)}_e = (hg_i)^2 g_i h^2 = g_i h^2 = g_j h \quad \text{s.t. } i \neq k \neq j$ 

So, 
$$h^3 = e = g_i^2$$
 for any  $i$ , and for distinct  $i, j$  and  $k$ :
$$g_i h = h^2 g_i = g_j \qquad hg_i = g_i h^2 = g_k$$

$$g_i g_j = g_i (g_i h) = \underbrace{g_i^2}_{e} h = h \qquad g_j g_i = (h^2 g_i) g_i = h^2 \underbrace{g_i^2}_{e} = h^2$$

$$g_k g_i = (hg_i) g_i = h \underbrace{g_i^2}_{e} h = h \qquad g_i g_k = g_i (g_i h^2) = \underbrace{g_i^2}_{e} h^2 = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{e} = \underbrace{(g_k g_i)}_{h} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_i g_i = h \qquad g_i g_k = g_i (g_i h^2) = \underbrace{g_i^2}_{e} h^2 = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2} \underbrace{(g_i g_j)}_{h^2} = h^2$$

$$g_j g_j g_j g_j = \underbrace{(g_i g_i)}_{h^2$$

$$g_j g_k = \underbrace{(g_j g_i)}_{h^2} \underbrace{(g_i g_k)}_{h^2} = \underbrace{h^{\mathcal{S}}_e}_h h = h \quad g_k g_j = \underbrace{(g_k g_i)}_h \underbrace{(g_i g_j)}_h = h^2$$

|                | $\mid e \mid$ | $g_1$ | $g_2$ | $g_3$ | h     | $h^2$ |
|----------------|---------------|-------|-------|-------|-------|-------|
| $\overline{e}$ | e             | $g_1$ | $g_2$ | $g_3$ | h     | $h^2$ |
| $g_1$          | $g_1$         | e     | $h^2$ | h     | $g_2$ | $g_3$ |
| $g_2$          | $g_2$         | h     | e     | $h^2$ | $g_3$ | $g_1$ |
| $g_3$          | $g_3$         | $h^2$ | h     | e     | $g_1$ | $g_2$ |
| h              | h             | $g_3$ | $g_1$ | $g_2$ | $h^2$ | e     |
| $h^2$          | $h^2$         | $g_2$ | $g_3$ | $g_1$ | e     | h     |
|                |               |       |       |       |       |       |

and 
$$G \cong S_3$$